

KNOWLEDGE INTO VALUE FOR OVER 30 YEARS

CONVERTING | Since 1986

The study of residual thermal stresses on the performance of hybrid composite single lap joints

IAMaC2023

20/07/2023

<u>V.D.C. Pires</u>¹, R.J.C. Carbas ^{1,2}, E.A.S. Marques ², L.F.M. da Silva ²

¹ Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

² Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

IAMaC2023

2nd Ibero-American Conference on Composite Materials 20th and 21th of July, 2023

CONTENT

1. Introduction

- 1.1. Background and motivation
- 1.2. The curved joint concept
- 1.3. Objectives

2. Experimental procedure

- 2.1. Materials
- 2.2. SLJ manufacturing
- 2.3. SLJ testing

3. Numerical details 3.1. Metal SLJ 3.2. Composite SLJ 4. Results 4.1. Metal SLJ 4.2. Composite SLJ 5. Conclusions

ADVANCED JOINING PROCESSES UNIT

Since 1986

1. Introduction

- 1.1. Background and motivation
- 1.2. The curved joint concept
- 1.3. Objectives

1. Introduction

1.1. Background and motivation

Composite materials in the aeronautical industry

Figure 1 – Trends in the use of composite materials in commercial aircrafts [Xu et al., 2018].

1. Introduction

1.1. Background and motivation Regulatory hurdles regarding adhesive bounding

Non-destructive testing limitations and delamination caused are key barriers to the widespread adoption of adhesive bonding in aircraft structures.

Figure 2 – Peel stress failure in adhesively bonded composite adherends [Hart Smith, 1973].

Figure 3 – Most prominent aviation regulatory bodies. (a) EASA in EU. (b) FAA in the US.

1 Introduction

Background and motivation

The curved joint concept **Objectives** Thesis work output

2 Exp. procedure

3 Num. details

4 Results

5 Conclusions

 \overline{P}

P

1.2. The curved joint concept

Load Path

P

Figure 4 – Behaviour of SLJ under traction. (a) Planar SLJ. (b) Curved SLJ..

 (a) (b)

P

1.3. Objectives

1 Introduction

- Background and motivation The curved joint concept Objectives
- 2 Exp. procedure 3 Num. details
- 4 Results
- 5 Conclusions

Experimental procedures

- 2.1. Materials
- 2.2. SLJ manufacturing
- 2.3. SLJ testing

2.

2.1. Materials Adhesive

3M Scotch AF163 2K

- Modified epoxy in film form;
- Aeronautical and aerospace applications.

Ginegl *supportion*

1 Introduction 2 Exp. Procedure Materials SLJ manufacturing SLJ testing

3 Num. Details

4 Results

5 Conclusions

Table 1 – AF 163-2K mechanical properties [dos Santos et al., 2019].

2. Experimental procedures

2.1. Materials Adherends

Table 2 – Orthotropic components for a unidirectional CFRP ply [Campilho et al., 2009].

Table 3 – CFRP cohesive properties [Machado et al., 2017].

Texipreg HS 160 REM

Table 4 – CFRP CTE [Pereira et al., 2004].

CFRP prepreg with ply thickness of 0.15mm.

ADVANCED JOINING ROCESSES UNIT 1 Introduction

2 Exp. Procedure

Materials

- SLJ manufacturing **SLJ** testing
- 3 Num. Details 4 Results 5 Conclusions

2.2. SLJ manufacturing Adherends warping

Adherend curvature was obtained through mechanical bending and plastic deformation.

Previous study **Current study**

Metal SLJ North Composite SLJ

Adherend curvature was obtained through curing of asymmetric composite layup.

1 Introduction 2 Exp. Procedure Materials SLJ manufacturing **SLJ** testing

3 Num. Details

4 Results

5 Conclusions

2.2. SLJ manufacturing

SLJ configurations and geometry

(a) The Call rights reserved **be completed** by **but vect below**.

■ INEGI all rights reserved Figure 5 – SLJ specimen geometry. (a) Planar SLJ. (b) Curved SLJ.

2.3. SLJ testing

All tests were performed in an Instron® 3832 (Norwood, MA, USA) quasi-static machine.

Testing speed: 1mm/min

Standards followed:

- 1. ASTM D5868 (Composite SLJ)
- 2. ASTM D1002 (Metal SLJ)

Ginecle driving science

- 1 Introduction 2 Exp. Procedure Materials SLJ manufacturing **SLJ** testing
- 3 Num. Details 4 Results 5 Conclusions

Figure 6 – Experimental setup.

Ginegl driving science **ADVANCED JOINING PROCESSES UNIT**

Numerical details

- 3.1. Metal SLJ
- 3.2. Composite SLJ
- 3.3. Mesh and boundary conditions

3.

3. Numerical details

3.1. Metal SLJ Parametric elasto-plastic models

Nomenclature: $\Delta t_a X$, refers to the model with X mm of extra maximum thickness relative to the reference

Fig.7 – Parametric study with varying curvatures and maximum adhesive thicknesses. 2D static analysis in ABAQUS® software CPE4R elements (Plane Strain) were used for the elastic model

Enriched elements

 G_k *i*=1, II

 $\delta_{am,i}$

Mixed-mode model

 $\delta_{\rm u}$

 δ ,

Crack surface

3.3. Composite SLJ

3. Numerical details

1 Introduction 2 Exp. Procedure 3 Num. Details SLJ Designer app Metal SLJ Composite SLJ Mesh and B.C

4 Results 5 Conclusions

3.4. Mesh and boundary conditions

Fig.8 – Boundary conditions and mesh used for the SLJs numerical models. Summer the Summerical models of the S

• ABAQUS Standard is used for the quasi-static analysis

• ABAQUS Explicit used for the intermediate and impact analysis

Thermal step

• Initial
$$
T
$$
 [°C]: 110

• Final T [°C]: 0

Ginegl annovation

- -4.1 . Metal SLJ
- 4.2. Composite SLJ

4.1. Metal SLJ Stress distributions 4. Results

Fig.9 – Longitudinal stresses in MPa along the overlap length for the elastic models. (a) Reference. (b) Model 3. (c) Model 5.

GINEC I driving science

 $\mathbf{0}$

 0.1

0.2

-Reference

0.3

 $-Model 3 ($\Delta t_a 0.72$)$

 0.4

 0.5

Normalized Overlap Position (x/L_0)

ADVANCED JOINING PROCESSES UNIT 1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results

Metal SLJ Composite SLJ

5 Conclusions

Fig.10 – Normalized peel stress distributions at the adhesive layer mid-thickness along the overlap.

— Model 1 $(\Delta t_a 0.24)$

— Model 4 $(\Delta t_a 0.96)$

 $0.6 \quad 0.7$

0.9

 0.8

0.2

 Ω

— Model 2 $(\Delta t_a 0.48)$

— Model 5 $(\Delta t_a 1.20)$

 0.1

 0.3

4.2. Composite SLJ

Peel stress distributions due to thermal stresses

Thermal effect only

Cinegi & Innovation

1 Introduction 2 Exp. Procedure 3 Num. Details

Composite SLJ

5 Conclusions

Fig.11 – Experimental and numerical failure mode for the studied SLJ. (a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.

4.2. Composite SLJ

Peel stress distributions after the mechanical step

Thermal + Mechanichal

Processes Unit 1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results Metal SLJ

ADVANCED JOINING

Composite SLJ

5 Conclusions

Fig.12 – Experimental and numerical failure mode for the studied SLJ. (a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.

4.2. Composite SLJ Failure modes in quasi-static conditions

Fig.13 – Experimental and numerical failure mode for the studied SLJ. (a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.

4.2. Composite SLJ Joint performance in quasi-static

Fig.14 – $P - \delta$ curves obtained experimentally and numerical for all configurations.

4.2. Composite SLJ Crack propagation 4. Results

- 1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results
- Metal SLJ Composite SLJ

5 Conclusions

Fig.16 – Comparison between the numerical and experimental cracks.

4.2. Composite SLJ Failure load for different strain rates

- 1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results Metal SLJ
- Composite SLJ
- 5 Conclusions

Fig.17 – Numerically predicted failure loads for each configuration for three different testing speeds..

5. **Conclusions**

U. PORTO

5. Conclusions

- This study showed that the use of the curved geometry significantly **decrease** the **peak stresses** in the overlap edges;
- Curved metal SLJs showed **increased energy absorption** with a ductile adhesive and significantly **improved failure load** when using with a brittle adhesive.
- The decrease of peak stresses, namely peel stresses on the overlap edges prevented delamination, allowing for a cohesive failure modes and improve performance on the composite SLJs.
- The curved composite SLJs successfully prevented delamination and exhibited higher failure loads, especially under intermediate speed and impact conditions. This can be attributed to their superior energy absorption capabilities observed in the study. These results emphasize the potential of curved SLJs as a reliable choice for various applications, including the aeronautical industry, where impact loadings are a significant concern.

1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results 5 Conclusions

Thank you for your attention!

INSTITUTE OF SCIENCE AND INNOVATION IN MECHANICAL AND INDUSTRIAL ENGINEERING

www.inegi.up.pt

 f in g o

6. Backup Slides

Experimental details

Backup Slides

Metal SLJ manufacturing Manufacturing process flowchart

33 © INEGI all rights reserved

Figure 18 – (a) CAD of the SLJ. (b) Final assembly of the SLJs before curing.

Backup Slides Metal SLJ manufacturing Manufacturing details

GINEC I driving science

CFRP SLJ manufacturing Manufacturing process flowchart Backup Slides

CFRP SLJ manufacturing Co-curing mechanism (1 step)

Fig.19 – Manufacturing mould scheme for co-curing.

Fig.20 – Manufacturing mould scheme for co-curing of the (a) reference 1.0mm and (b) curved SLJs.

Backup Slides

Sandblasting Phosphoric acid anodization (PAA)

Atmospheric plasma treatment (APT)

Warpage measurement of composite plates

7.

Backup Slides

Experimental details

Backup Slides

Parameters and methods used for the numerical simulations CZM models

CINCCI & Innovation

Parameters and methods used for the numerical simulations Backup Slides

ADVANCED JOINING PROCESSES UNIT

Fig.22 – Numerical simulation results of the composite warpage.

Backup Slides

Parameters and methods used for the numerical simulations

Fig.23 – Warpage of the composite adherend L5 due to thermal stresses.

8.

Backup Slides

Metal SLJ results

Metal SLJ Failure modes

1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results Metal SLJ Composite SLJ

5 Conclusions

GINEC I driving science

ADVANCED JOINING Processes Unit

Fig.24 – Experimental failure mode for the reference and curved joints.

Fig.25 – $P - \delta$ curves obtained experimentally and numerical for both adhesives. The curved configuration corresponds to the geometry with the highest curvature. (a) 2015-1 (b) AV138.

Metal SLJ Joint performance

ADVANCED JOINING ROCESSES **U**nit

Metal SLJ Summary

- Curved SLJs with ductile adhesives didn't improve failure load but had a 62% increase in absorbed energy.
- Curved SLJs with brittle adhesive showed a 131% increase in failure load and a 291% increase in absorbed energy, due to sensitivity to peak stresses at overlap edges.

Fig.26 – Failure load for the reference and curved joints bonded with Araldite®2015-1 and AV138.

