

CONVERTING KNOWLEDGE INTO VALUE FOR OVER 30 YEARS Since 1986

....

The study of residual thermal stresses on the performance of hybrid composite single lap joints

IAMaC2023

20/07/2023

V.D.C. Pires¹, R.J.C. Carbas ^{1,2}, E.A.S. Marques ², L.F.M. da Silva ²

¹ Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

² Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

IAMaC2023

2nd Ibero-American Conference on Composite Materials 20th and 21th of July, 2023

U. PORTO

CONTENT

1. Introduction

- 1.1. Background and motivation
- **1.2. The curved joint concept**
- 1.3. Objectives

2. Experimental procedure

- 2.1. Materials
- 2.2. SLJ manufacturing
- 2.3. SLJ testing

3. Numerical details 3.1. Metal SLJ 3.2. Composite SLJ 4. Results 4.1. Metal SLJ 4.2. Composite SLJ 5. Conclusions

Advanced Joining Processes Unit

Since 1986

Introduction

- 1.1. Background and motivation
- 1.2. The curved joint concept
- 1.3. Objectives

1. Introduction

1.1. Background and motivation

Composite materials in the aeronautical industry

1. Introduction

1.1. Background and motivation

Regulatory hurdles regarding adhesive bounding

Non-destructive testing limitations and **delamination** caused are key barriers to the widespread adoption of adhesive bonding in aircraft structures.

Figure 2 – Peel stress failure in adhesively bonded composite adherends [Hart Smith, 1973].

Figure 3 – Most prominent aviation regulatory bodies. (a) EASA in EU. (b) FAA in the US.

1 Introduction

Background and motivation

The curved joint concept Objectives

Thesis work output

- 2 Exp. procedure
- 3 Num. details
- 4 Results
- 5 Conclusions

1.2. The curved joint concept

Figure 4 – Behaviour of SLJ under traction. (a) Planar SLJ. (b) Curved SLJ..

1.3. Objectives

Cinegi driving science & innovation

1 Introduction Background and motivation The curved joint concept

PROCESSES UNIT

Objectives

- 2 Exp. procedure
- 3 Num. details
- 4 Results
- 5 Conclusions

2 **Experimental procedures**

- 2.1. Materials
- 2.2. SLJ manufacturing
- 2.3. SLJ testing

2. Experimental procedures

2.1. Materials Adhesive

3M Scotch AF163 2K

- Modified epoxy in film form;
- Aeronautical and aerospace applications.

1 Introduction 2 Exp. Procedure Materials SLJ manufacturing SLJ testing

3 Num. Details

4 Results

5 Conclusions

Table 1 – AF 163-2K mechanical properties [dos Santos et al., 2019].

Young's modulus (GPa]	Tensile strength (MPa)	Shear modulus (MPa)	Shear strength (MPa)	<i>G_{IC}</i> (N/mm)	<i>G_{IIC}</i> (N/mm)	CTE (µm/mK ⁻¹)
1.521±0.118	46.9 ±0.6	159.73±41.9	46.9 ±2.57	4.05±0.07	9.77 ±0.21	90

2. Experimental procedures

2.1. Materials Adherends

Table 2 – Orthotropic components for a unidirectional CFRP ply [Campilho et al., 2009].

Material	<i>E</i> ₁₁	<i>E</i> ₂₂	Е ₃₃	v ₁₂	v ₁₃	v ₂₃	G ₁₂	G ₁₃	G ₂₃
	[GPa]	[GPa]	[GPa]	[-]	[-]	[-]	[GPa]	[GPa]	[GPa]
CFRP	109	8.819	8.819	0.342	0.342	0.342	4.315	4.315	3.2

Table 3 – CFRP cohesive properties [Machado et al., 2017].

Material	t_n^0 [MPa]	t_s^0 [MPa]	G _{IC} [N/mm]	<i>G_{IIC}</i> [N/mm]
CFRP	109	8.819	8.819	0.342

Texipreg HS 160 REM

CFRP prepreg with ply thickness of 0.15mm.

Table 4 – CFRP CTE [Pereira et al., 2004].

Material	α ₁₁	α ₂₂	α ₂₂
	[μm/mK ⁻¹]	[μm/mK ⁻¹]	[μm/mK ⁻¹]
CFRP	-0.1	26	26

PROCESSES UNIT

Advanced Joining

2 Exp. Procedure

Materials

SLJ manufacturing

SLJ testing

3 Num. Details

4 Results

5 Conclusions

2.2. SLJ manufacturing

Adherends warping

Metal SLJ

Adherend curvature was obtained through mechanical **bending** and **plastic deformation**.

Previous study

Composite SLJ

Adherend curvature was obtained through **curing** of **asymmetric** composite layup.

Current study

Advanced Joining Processes Unit

Introduction
 Exp. Procedure
 Materials
 SLJ manufacturing
 SLJ testing

- 4 Results
- 5 Conclusions

³ Num. Details

2.2. SLJ manufacturing

SLJ configurations and geometry

Figure 5 – SLJ specimen geometry. (a) Planar SLJ. (b) Curved SLJ.

2.3. SLJ testing

All tests were performed in an Instron[®] 3832 (Norwood, MA, USA) quasi-static machine.

Testing speed: 1mm/min

Standards followed:

- 1. ASTM D5868 (Composite SLJ)
- 2. ASTM D1002 (Metal SLJ)

- 1 Introduction 2 Exp. Procedure Materials SLJ manufacturing SLJ testing
- 3 Num. Details **4** Results 5 Conclusions

Figure 6 – Experimental setup.

Numerical details

- 3.1. Metal SLJ
- 3.2. Composite SLJ
- 3.3. Mesh and boundary conditions

3

3. Numerical details

3.1. Metal SLJ Parametric elasto-plastic models

Nomenclature: $\Delta t_a X$, refers to the model with Xmm of extra maximum thickness relative to the reference

Fig.7 – Parametric study with varying curvatures and maximum adhesive thicknesses. 2D static analysis in ABAQUS® software CPE4R elements (Plane Strain) were used for the elastic model

 σ_i

Ou, i

 $\sigma_{\mathrm{um},i}$

Pure mode

 G_i i=1, II

 G_k i=1, 11

Sum,i

Mixed-mode

Sai

S,

3. Numerical details 3.3. Composite SLJ CZM and XFEM models CFRP (Elastic) CFRP (Cohesive)

Adhesive (Elastic)

Adhesive (Cohesive)

٠

- 2D static analysis in ABAQUS® software
- **CPE4 elements** (Plane Strain) for the elastic sections
- COH2D4 elements (Cohesive) for the cohesive section

- Introduction
 Exp. Procedure
 Mum. Details
 SLJ Designer app
 Metal SLJ
 Composite SLJ
 Mesh and B.C
- 4 Results 5 Conclusions

3.4. Mesh and boundary conditions

© INEGI all rights reserved

Fig.8 – Boundary conditions and mesh used for the SLJs numerical models.

- ABAQUS Standard is used for the quasi-static analysis
- ABAQUS Explicit used for the intermediate and impact analysis

Thermal step

• Final *T* [°C]: 0

5 Conclusions

U. PORTO

- 4.1. Metal SLJ
- 4.2. Composite SLJ

4.1. Metal SLJ Stress distributions

Fig.9 – Longitudinal stresses in MPa along the overlap length for the elastic models. (a) Reference. (b) Model 3. (c) Model 5.

2 Exp. Procedure

3 Num. Details

4 Results Metal SLJ Composite SLJ

5 Conclusions

Fig.10 – Normalized peel stress distributions at the adhesive layer mid-thickness along the overlap.

— Model 4 ($\Delta t_a 0.96$)

Reference

-Model 3 ($\Delta t_a 0.72$)

4. Results

- Model 5 (Δt_a 1.20)

4.2. Composite SLJ

Peel stress distributions due to thermal stresses

Thermal effect only

1 Introduction
 2 Exp. Procedure
 3 Num. Details
 4 <u>Results</u>
 Metal SLJ

Composite SLJ

5 Conclusions

Fig.11 – Experimental and numerical failure mode for the studied SLJ. (a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.

4.2. Composite SLJ

Peel stress distributions after the mechanical step

Thermal + Mechanichal

Cinegi driving science & innovation

Introduction
 Exp. Procedure
 Num. Details
 <u>Results</u>
 Metal SLJ
 Composite SLJ

5 Conclusions

Fig.12 – Experimental and numerical failure mode for the studied SLJ. (a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.

4.2. Composite SLJ Failure modes in quasi-static conditions

Fig.13 – Experimental and numerical failure mode for the studied SLJ. (a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.

4.2. Composite SLJ Joint performance in quasi-static

Fig.14 – $P - \delta$ curves obtained experimentally and numerical for all configurations.

4. Results 4.2. Composite SLJ Crack propagation

- 1 Introduction
 2 Exp. Procedure
 3 Num. Details
 4 <u>Results</u>
 Metal SLJ
- Composite SLJ

5 Conclusions

Fig.16 – Comparison between the numerical and experimental cracks.

4.2. Composite SLJ Failure load for different strain rates

ADVANCED JOINING PROCESSES UNIT

1 Introduction
 2 Exp. Procedure
 3 Num. Details
 4 <u>Results</u>
 Metal SLJ
 Composite SLJ

5 Conclusions

Fig.17 – Numerically predicted failure loads for each configuration for three different testing speeds.

5 Conclusions

5. Conclusions

- This study showed that the use of the curved geometry significantly **decrease** the **peak stresses** in the overlap edges;
- Curved metal SLJs showed **increased energy absorption** with a ductile adhesive and significantly **improved failure load** when using with a brittle adhesive.
- The decrease of peak stresses, namely peel stresses on the overlap edges **prevented delamination**, allowing for a **cohesive** failure modes and improve performance on the composite SLJs.
- The curved composite SLJs successfully prevented delamination and exhibited higher failure loads, especially under intermediate speed and impact conditions. This can be attributed to their superior energy absorption capabilities observed in the study. These results emphasize the potential of curved SLJs as a reliable choice for various applications, including the aeronautical industry, where impact loadings are a significant concern.

DVANCED JOINI

Thank you for your attention!

INSTITUTE OF SCIENCE AND INNOVATION IN MECHANICAL AND INDUSTRIAL ENGINEERING

www.inegi.up.pt

f in 🖌 🖸

6. -

Backup Slides

Experimental details

Backup Slides

Metal SLJ manufacturing

Manufacturing process flowchart

d

© IN	JEGI	all	rights	reserved

Backup Slides Metal SLJ manufacturing

Manufacturing details

Spacer 2	
(a)	(b)

Figure 18 – (a) CAD of the SLJ. (b) Final assembly of the SLJs before curing.

Name	Туре	Curing Conditions
2015-1	Ductile	8h @ T _{Room}
AV138	Brittle	24h @ T _{Room}

Backup Slides CFRP SLJ manufacturing Manufacturing process flowchart

CFRP SLJ manufacturing Co-curing mechanism (1 step)

Fig.19 – Manufacturing mould scheme for co-curing.

Mould spacer

CFRP SLJ manufacturing Co-curing mechanism (1 step)

Base plate

Backup Slides

Fig.20 – Manufacturing mould scheme for co-curing of the (a) reference 1.0mm and (b) curved SLJs.

Adhrend

driving science

ADVANCED JOINING

PROCESSES UNIT

Cinedi driving science

Sandblasting

Phosphoric acid anodization (PAA)

Atmospheric plasma treatment (APT)

Warpage measurement of composite plates

7.-

Backup Slides

Experimental details

Backup Slides

Parameters and methods used for the numerical simulations CZM models

e inegi

Backup Slides Parameters and methods used for the numerical simulations

Fig.22 – Numerical simulation results of the composite warpage.

Table 5 – Numerical and experimental results of the observed maximum warpage of the asymmetric
composite plates.

Layup	Numerical (mm)	Experimental (mm)	Error (%)
L5	3.49	3.51	0.76

Backup Slides

Parameters and methods used for the numerical simulations

Fig.23 – Warpage of the composite adherend L5 due to thermal stresses.

8

Backup Slides

Metal SLJ results

Metal SLJ Failure modes

2015-1 (Ductile)

Cinegi driving science & innovation

1 Introduction 2 Exp. Procedure 3 Num. Details 4 Results Metal SLJ Composite SLJ

5 Conclusions

Fig.24 – Experimental failure mode for the reference and curved joints.

(a)

Fig.25 – $P-\delta$ curves obtained experimentally and numerical for both adhesives. The curved configuration corresponds to the geometry with the highest curvature. (a) 2015-1 (b) AV138.

Metal SLJ Joint performance

DVANCED JOINING OCESSES UNIT

Metal SLJ Summary

- Curved SLJs with ductile adhesives didn't improve failure load but had a 62% increase in absorbed energy.
- Curved SLJs with brittle adhesive showed a 131% increase in failure load and a 291% increase in absorbed energy, due to sensitivity to peak stresses at overlap edges.

Fig.26 – Failure load for the reference and curved joints bonded with Araldite[®]2015-1 and AV138.

