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1. 
Introduction

▪ 1.1. Background and motivation

▪ 1.2. The curved joint concept
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1.1. Background and motivation
1. Introduction

Composite materials in the aeronautical industry

Figure 1 – Trends in the use of composite materials in commercial aircrafts [Xu et al., 2018].
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1.1. Background and motivation
1. Introduction

Regulatory hurdles regarding adhesive bounding

Figure 2 – Peel stress failure in adhesively bonded composite adherends [Hart Smith, 1973].

Figure 3 – Most prominent aviation regulatory bodies. (a) EASA in EU. (b) FAA in the US.

(a) (b)

Non-destructive testing limitations and delamination caused are key barriers to the
widespread adoption of adhesive bonding in aircraft structures.
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1.2. The curved joint concept
1. Introduction

Typical SLJ Curved SLJ

Compression

Tension

Figure 4 – Behaviour of SLJ under traction. (a) Planar SLJ. (b) Curved SLJ..

(a) (b)
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2. 
Experimental procedures

▪ 2.1. SLJ manufacturing

▪ 2.2. SLJ testing 
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2. Experimental procedures

2.1. SLJ manufacturing

(a) (b)

Figure 5 – SLJ specimen geometry. (a) Planar SLJ. (b) Curved SLJ.

Reference 0.2 mm

Reference 1.0 mm

Curved

Composite SLJMetal SLJ

Reference 0.2 mm

Curved

SLJ configurations and geometry
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2. Experimental procedures

2.2. SLJ testing

Specimen

LED light

Quasi-static 
machine

High speed 
camera

Figure 6 – Experimental setup.

All tests were performed in an
Instron® 3832 (Norwood, MA, USA)
quasi-static machine.

Testing speed: 1mm/min

Standards followed:
1. ASTM D5868 (Composite SLJ)

2. ASTM D1002 (Metal SLJ)
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3. 
Numerical details

▪ 3.1. Metal SLJ

▪ 3.2. Composite SLJ
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3.1. Metal SLJ
Parametric elasto-plastic models

3. Numerical details

Fig.7 – Parametric study with varying curvatures and maximum adhesive thicknesses. 2D static analysis in 
ABAQUS® software CPE4R elements (Plane Strain) were used for the elastic model

Reference Model (Δ𝑡𝑎 0.00)

Model 2 (Δ𝑡𝑎 0.48)

Model 5 (Δ𝑡𝑎 1.20)

Nomenclature: Δ𝑡𝑎 𝑋, refers to the model with 𝑋mm of 
extra maximum thickness relative to the reference

Reference Model (Δ𝑡𝑎 0.00)

Model 1 (Δ𝑡𝑎 0.24)

Model 2 (Δ𝑡𝑎 0.48)

Model 3 (Δ𝑡𝑎 0.72)

Model 4 (Δ𝑡𝑎 0.96)

Model 5 (Δ𝑡𝑎 1.20)
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CZM Models

3. Numerical details

Aluminium (Elasto-plastic)

Adhesive (Elastic)

Adhesive (Cohesive)

• 2D static analysis in ABAQUS® software
• CPE4 elements (Plane Strain) for the elastic sections
• COH2D4 elements (Cohesive) for the cohesive section

3.1. Metal SLJ
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3.2. Composite SLJ
CZM and XFEM models

3. Numerical details

CFRP (Elastic)

CFRP (Cohesive)

Adhesive (Elastic)

Adhesive (Cohesive)

• 2D static analysis in ABAQUS® software
• CPE4 elements (Plane Strain) for the elastic sections
• COH2D4 elements (Cohesive) for the cohesive section

XFEM crack domain

Enriched elements

Crack surface
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4. 
Results

▪ 4.1. Metal SLJ

▪ 4.2. Composite SLJ
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(a)

(b)

(c)

Fig.8 – Longitudinal stresses in MPa along the overlap length for the elastic models. 
(a) Reference. (b) Model 3. (c) Model 5.

4.1. Metal SLJ
Stress distributions

4. Results
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Fig.9 – Normalized peel stress distributions at the adhesive layer mid-thickness along the overlap.

4.1. Metal SLJ
Peel stress distributions

4. Results
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4.1. Metal SLJ
Joint performance

4. Results

1 Introduction

2 Exp. Procedure

3 Num. Details
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Metal SLJ

Composite SLJ

5 Conclusions

Fig.10 – 𝑃 − 𝛿 curves obtained experimentally and numerical for both adhesives. The curved 
configuration corresponds to the geometry with the highest curvature. (a) 2015-1 (b) AV138.

(a) (b)

131% increase
in failure load

62% increase in
absorbed energy

Brittle AdhesiveDuctile Adhesive

Global 
Yielding
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4.2. Composite SLJ
Failure mode

4. Results

(a) (b) (c)

Fig.11 – Experimental and numerical failure mode for the studied SLJ. 
(a) Reference 0.2. (b) Reference 1.0mm. (c) Curved.
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1 Introduction

2 Exp. Procedure

3 Num. Details

4 Results

Metal SLJ

Composite SLJ

5 Conclusions

Fig.12 – 𝑃 − 𝛿 curves obtained experimentally and numerical for all configurations.
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Joint performance in quasi-static
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Experimental Numerical
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1 Introduction

2 Exp. Procedure

3 Num. Details
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(a) (b)

Fig.13 – Crack propagation. (a) Numerical crack prediction. (b) Experimental crack propagation.
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Crack propagation

4. Results



21
© INEGI all rights reserved

1 Introduction

2 Exp. Procedure

3 Num. Details
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Predicted Crack (XFEM)Experimental Crack

4.2. Composite SLJ
Crack propagation

4. Results

Fig.14 – Comparison between the numerical and experimental cracks.
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5. 
Conclusions

▪ 5.1. Conclusions

▪ 5.2. Scientific output
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5.1. Conclusions
5. Conclusions

• This study showed that the use of the curved geometry significantly decrease
the peak stresses in the overlap edges.

• Curved metal SLJs showed increased energy absorption with a ductile adhesive
and significantly improved failure load when using with a brittle adhesive.

• The decrease of peak stresses, namely peel stresses on the overlap edges
prevented delamination, allowing for a cohesive failure modes and improve
performance on the composite SLJs in static and higher strain rates scenarios.

• The study demonstrated the promising characteristics of curved substrate SLJs
for both metal and composite applications, offering superior failure modes and
performance. Further optimization and modifications of the curved configuration
are suggested for enhanced performance.
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5.2. Scientific output
5. Conclusions
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Scientific outputPaper I (Submitted)

Curved Single Lap Joint
Design: A Novel Approach to
Mitigate Stress Concentrations
in Adhesive Joints

V.D.C.Pires, F.C.C.Ribeiro,
R.C.J.Carbas, E.A.S.Marques,
L.F.M. da Silva

Paper II (Submitted)

Curved Single Lap Joints: An
Innovative Approach to
Prevent Delamination in
CFRP SLJ

V.D.C.Pires, R.C.J.Carbas,
E.A.S.Marques, L.F.M. da
Silva

SLJ Designer for ABAQUS CAE JCM – Sage Journals

• Generation of SLJ within a
costume GUI in ABAQUS CAE;

• Includes linear Elastic, Elasto-
Plastic, and CZM models;

• Used by students from the
Master‘s in Mechanical
Engineering from FEUP.
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5.2. Scientific output - Conferences
5. Conclusions
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quasi-static conditions with
thermal residual
stresses
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The study of residual thermal stresses on the
performance of hybrid composite single lap
join

V.D.C.Pires, R.C.J.Carbas, E.A.S.Marques, L.F.M.
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The influence of bent adherends on adhesively
joints strength performance
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SLJ Designer application 
ABAQUS python productivity

Fig.15 – Automation approaches in
ABAQUS ranked by complexity and
productivity of the user using Python
scripting [Chakraborty, 2021].
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SLJ Designer application 
Features

ABAQUS CAE classical GUI SLJ Designer

Average time to build a SLJ model:

• Beginner: 1h +

• Advanced: 5-20 mins

Average time to build a SLJ model:

• 1-5 mins (+ 91.6% productivity)

Geometry and Materials
(already included in a
database)

Simulation details
• Mesh
• B.C
• Thermal step

Model generation and
job submission

Visualization and post-
processing
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SLJ Designer application 
Results utput

Fig.16 – Post-processing features of SLJ Designer.
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SLJ Designer application 
Application flowchart

Fig.17 – Automation approaches in
ABAQUS ranked by complexity and
productivity of the user using Python
scripting [Chakraborty, 2021].
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SLJ Designer application 
Forms GUI

Fig.18 – Some of the forms used in
the SLJ application.
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SLJ Designer application 
Demo Part 1 – Model Generation
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SLJ Designer application 
Demo Part 2 – Post Processing
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SLJ Designer application 
Demo Part 3 – Curved SLJ
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SLJ manufacturing

Composite SLJMetal SLJ

Adherend curvature was obtained through
mechanical bending and plastic deformation.

Adherend curvature was obtained through
curing of asymmetric composite layup.

Curing

𝑇𝑐𝑢𝑟𝑖𝑛𝑔

𝑇𝑎𝑚𝑏
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Figure 19 – Stress-strain curves. (a) Aluminum. (b) Araldite® AV138, Araldite® 2015 and AF163-2K.

Material 𝑬𝟏𝟏 [GPa] 𝑬𝟐𝟐 [GPa] 𝑮𝟏𝟐 [GPa] 𝒗𝟏𝟐 [ - ]
𝜶𝟏𝟏

[μm/mK−1]
𝜶𝟐𝟐

[μm/mK−1]

CFRP 109 8819 4.315 0.342 -0.1 26

(a) (b)

Material 𝑬 [GPa] 𝝈𝒚 [MPa] 𝒗 [ - ] 𝜶 [μm/mK−1]

AW6082 T6 67 260 0.3 23.6
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Adhesive material properties

Property AV138 2015-1 AF163-2K

Young’s modulus, 𝐸 [MPa] 4890 1850 1520

Poisson’s ratio, 𝑣 [-] 0.35 0.33 0.34

Shear modulus, 𝐺 [MPa] 1560 560 565

Tensile failure strength, 𝑡𝑛
0 [MPa] 39.5 21.6 46.9

Shear failure strength, 𝑡𝑠
0 [MPa] 30.2 17.9 46.9

Toughness in tension, 𝐺𝐼𝐶 [MPa] 0.20 0.43 4.05

Toughness in shear,𝐺𝐼𝐼𝐶 [MPa] 0.38 4.70 9.77

CTE, α [μm/mK−1] 67 120 90

Table 2 – Properties of the adhesives AV138, 2015-1 and AF 163-2 K.
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Metal SLJ manufacturing

Bending of the 
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Curing

4
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0

Testing

6
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Figure 20 – (a) CAD of the SLJ. (b) Final assembly of the SLJs before curing. 

(a) (b)

Name Type Curing Conditions

2015-1 Ductile 8h @ 𝑇𝑅𝑜𝑜𝑚

AV138 Brittle 24h @ 𝑇𝑅𝑜𝑜𝑚
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CFRP SLJ manufacturing
Manufacturing process flowchart

Hand layup of the 
CFRP prepreg plies

1

Adhesive stacking

2
Assembly in the 

mould

3

Co-Curing

4

Cutting Specimens

5
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CFRP SLJ manufacturing
Co-curing mechanism (1 step)

Fig.21 – Manufacturing mould scheme for co-curing.  
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CFRP SLJ manufacturing
Co-curing mechanism (1 step)

Fig.22 – Manufacturing mould scheme for co-curing of the (a) reference 1.0mm and (b) curved SLJs.  
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Surface treatments performed
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Sandblasting
Phosphoric acid 

anodization (PAA)
Atmospheric plasma 

treatment (APT)
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Warpage measurement of composite plates
Backup Slides

Fig.23 – (a) Original image. (b)-(d) Image processing
procedure. (f) Final result where the edge is correctly
traced.
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Mesh and boundary conditions

Fig.12 – Boundary conditions and mesh used for the SLJs numerical models.

• ABAQUS Standard is used for the quasi-static analysis
• ABAQUS Explicit used for the intermediate and impact analysis

Thermal step

• Initial 𝑇 [°C]:
• Final 𝑇 [°C]:

110
0
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Parameters and methods used for the numerical simulations
Backup Slides

CZM models

Trapezoidal CZM laws
used in the modelling
of Araldite®2015-1 for
Mode 1 and Mode 2.

Damage initiation: QUADS

𝑡𝑛

𝑡𝑛
0

2

+
𝑡𝑠

𝑡𝑠
0

2

= 1

Mixed mode behaviour: Power law (𝛽 = 1)

𝐺𝑛
𝐺𝑛
𝑐

𝛽

+
𝐺𝑠1
𝐺𝑠
𝑐

𝛽

= 1
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Parameters and methods used for the numerical simulations
Influence of the damage initiation criteria in crack propagation

Stress-based criteria are more sensible to stress
concentrations [Campilho, et al,. 2011], underpredicting the
failure load. Hence, strain based criteria are the most
suitable ones.

𝑓 =
𝜀𝑛

𝜀𝑛
0

2

+
𝜀𝑠

𝜀𝑠
0

2

Damage initiation: QUADE Mixed mode behaviour: 
Power law (𝛽 = 1)

𝐺𝑛
𝐺𝑛
𝑐

𝛽

+
𝐺𝑠1
𝐺𝑠
𝑐

𝛽

= 1

QUAD (quadratic nominal strain)

MAXE (maximum nominal strain)
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Parameters and methods used for the numerical simulations
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Layup Numerical (mm) Experimental (mm) Error (%)

[0º/90º/0º/90º] 
[LIU et al., 2022]

11.35 11.06 2.6

This study (L5) 3.49 3.51 0.76

Fig.24 – Numerical simulation results of the composite warpage.

Table 3 – Numerical and experimental results of the observed maximum warpage of the asymmetric
composite plates.
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Parameters and methods used for the numerical simulations
Backup Slides

Fig.25 – Warpage of the composite adherend L5 due to thermal stresses.
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Aeronautical application of the curved SLJ
Backup Slides

Fig.26 – Example of an aeronautical application of the curved SLJ.
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Techniques that improve joint strength in composite joints
Backup Slides

Fig.27 – Schematic of surface toughening techniques [Shang, et al., 2019]. 

Surface toughening techniques
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Techniques that improve joint strength in composite joints
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Fig.28 – Schematic representation
of transverse connection of
adherends [Shang, et al., 2019].

Transverse connection 


